时间:2021-05-23
拟合曲线 y = 2 × x2+ x + 1
X_m = np.mat([[i**2, i, 1] for i in range(-10,10)]) #矩阵类型,用于运算y_m = np.mat([[2*x[0,0]+x[0,1]+1+random.normalvariate(0,1)] for x in X_m]) #矩阵类型,用于运算X_a = np.asarray(X_m[:,1].T)[0] #array类型,用于可视化y_a = np.asarray(y_m.T)[0] #array类型,用于可视化plt.scatter(X_a, y_a) #显示数据plt.show()array([1.99458492, 0.91587829, 1.48498921])
5. 评价( R2)
y_mean = y_a.mean()y_pre = np.array([w_a[0]*x[0,0]+w_a[1]*x[0,1]+w_a[2] for x in X_m])SSR = ((y_pre-y_mean)**2).sum()SST = ((y_a-y_mean)**2).sum()R2 = SSR/SSTprint(R2)0.9845542903194531
我们可以认为拟合效果不错。如果 R 2 R^{2} R2的值接近0,可能需要重新调参。
到此这篇关于Python实现批量梯度下降法(BGD)拟合曲线的文章就介绍到这了,更多相关Python 批量梯度下降内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合。#-*-coding:utf-8-*-importnumpyasnpimportmatplotli
在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,
本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下使用工具:Python(x,y)2.6.6运行环境:Windows10问题:求
假设我们已经知道梯度法——最速下降法的原理。现给出一个算例:如果人工直接求解:现给出Python求解过程:importnumpyasnpfromsympyimp
Rosenbrock函数的定义如下:其函数图像如下:我分别使用梯度下降法和牛顿法做了寻找Rosenbrock函数的实验。梯度下降梯度下降的更新公式:图中蓝色的点