Python实现批量梯度下降法(BGD)拟合曲线

时间:2021-05-23

1. 导入库

import numpy as np #矩阵运算import matplotlib.pyplot as plt #可视化import random #产生数据扰动

2. 产生数据

拟合曲线 y = 2 × x2+ x + 1

X_m = np.mat([[i**2, i, 1] for i in range(-10,10)]) #矩阵类型,用于运算y_m = np.mat([[2*x[0,0]+x[0,1]+1+random.normalvariate(0,1)] for x in X_m]) #矩阵类型,用于运算X_a = np.asarray(X_m[:,1].T)[0] #array类型,用于可视化y_a = np.asarray(y_m.T)[0] #array类型,用于可视化plt.scatter(X_a, y_a) #显示数据plt.show()

3. BGD

def BGD(X,y,w0,step,e): #批量梯度下降法 n=0 while n<=10000: w1 = w0-step*X.T.dot(X.dot(w0)-y)/X.shape[0] dw = w1-w0; if dw.dot(dw.T)[0,0] <= e**2: return w1 n += 1 w0 = w1 return w1

4. 计算

w_m = BGD(X_m,y_m,np.mat([[5],[3],[2]]),1e-4,1e-20) #可自行调参w_a = np.asarray(w_m.T)[0]print(w_a)

array([1.99458492, 0.91587829, 1.48498921])

5. 评价( R2)

y_mean = y_a.mean()y_pre = np.array([w_a[0]*x[0,0]+w_a[1]*x[0,1]+w_a[2] for x in X_m])SSR = ((y_pre-y_mean)**2).sum()SST = ((y_a-y_mean)**2).sum()R2 = SSR/SSTprint(R2)

0.9845542903194531
我们可以认为拟合效果不错。如果 R 2 R^{2} R2的值接近0,可能需要重新调参。

6. 结果展示

X = np.linspace(-10,10,50)y = np.array([w_a[0]*x**2+w_a[1]*x+w_a[2] for x in X])plt.scatter(X_a,y_a)plt.plot(X,y)plt.show()

到此这篇关于Python实现批量梯度下降法(BGD)拟合曲线的文章就介绍到这了,更多相关Python 批量梯度下降内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章