时间:2021-05-23
Python 3.6 + OpenCV 3.4.1.15
首先,提取出模板中每一个数字的轮廓,再对信用卡图像进行处理,提取其中的数字部分,将该部分数字与模板进行匹配,即可得到结果。
模板展示
完整代码
# !/usr/bin/env python# —*— coding: utf-8 —*—# @Time: 2020/1/11 14:57# @Author: Martin# @File: utils.py# @Software:PyCharmimport cv2def sort_contours(cnts, method='left-to-right'): reverse = False i = 0 if method == 'right-to-left' or method == 'bottom-to-top': reverse = True if method == 'top-to-bottom' or method == 'bottom-to-top': i = 1 boundingboxes = [cv2.boundingRect(c) for c in cnts] (cnts, boundingboxes) = zip(*sorted(zip(cnts, boundingboxes), key=lambda b: b[1][i], reverse=reverse)) return cnts, boundingboxesdef resize(image, width=None, height=None, inter=cv2.INTER_AREA): (h, w) = image.shape[:2] if width is None and height is None: return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized# !/usr/bin/env python# —*— coding: utf-8 —*—# @Time: 2020/1/11 14:57# @Author: Martin# @File: template_match.py# @Software:PyCharm"""基于模板匹配的信用卡数字识别"""import cv2import utilsimport numpy as np# 指定信用卡类型FIRST_NUMBER = { '3' : 'American Express', '4' : 'Visa', '5' : 'MasterCard', '6' : 'Discover Card'}# 绘图显示def cv_show(name, image): cv2.imshow(name, image) cv2.waitKey(0) cv2.destroyAllWindows()# 读取模板图像img = cv2.imread('./images/ocr_a_reference.png')cv_show('img', img)# 转化成灰度图ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv_show('ref', ref)# 转化成二值图像ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]cv_show('ref', ref)# 计算轮廓ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)cv_show('img', img)print(np.array(refCnts).shape)# 排序,从左到右,从上到下refCnts = utils.sort_contours(refCnts, method='left-to-right')[0]digits = {}# 遍历每一个轮廓for (i, c) in enumerate(refCnts): (x, y , w, h) = cv2.boundingRect(c) roi = ref[y:y+h, x:x+w] roi = cv2.resize(roi, (57, 88)) digits[i] = roi# 初始化卷积核rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))# 读取输入图像,预处理img_path = input("Input the path and image name: ")image_input = cv2.imread(img_path)cv_show('image', image_input)image_input = utils.resize(image_input, width=300)gray = cv2.cvtColor(image_input, cv2.COLOR_BGR2GRAY)cv_show('gray', gray)# 礼帽操作,突出更明亮的区域tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)cv_show('tophat', tophat)gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)gradX = np.absolute(gradX)(minVal, maxVal) = (np.min(gradX), np.max(gradX))gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))gradX = gradX.astype("uint8")print(np.array(gradX).shape)cv_show('gradX', gradX)# 闭操作gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)cv_show('gradX', gradX)thresh = cv2.threshold(gradX, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv_show('thresh', thresh)thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)cv_show('thresh', thresh)# 计算轮廓thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)cnts = threshCntscur_img = image_input.copy()cv2.drawContours(cur_img, cnts, -1, (0, 0, 255), 3)cv_show('img', cur_img)locs = []# 遍历轮廓for (i, c) in enumerate(cnts): (x, y, w, h) = cv2.boundingRect(c) ar = w / float(h) if 2.5 < ar < 4.0 and (40 < w < 55) and (10 < h < 20): locs.append((x, y, w, h))# 将符合的轮廓从左到右排序locs = sorted(locs, key=lambda ix: ix[0])output = []# 遍历每一个轮廓中的数字for (i, (gX, gY, gW, gH)) in enumerate(locs): groupOutput = [] group = gray[gY - 5:gY + gH + 5, gX - 5: gX + gW + 5] cv_show('group', group) # 预处理 group = cv2.threshold(group, 0, 255, cv2.THRESH_OTSU)[1] cv_show('group', group) # 计算每一组轮廓 group_, digitCnts, hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) digitCnts = utils.sort_contours(digitCnts, method='left-to-right')[0] # 计算每一组的每个数值 for c in digitCnts: (x, y, w, h) = cv2.boundingRect(c) roi = group[y: y + h, x: x + w] roi = cv2.resize(roi, (57, 88)) cv_show('roi', roi) scores = [] for (digit, digitROI) in digits.items(): result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF) (_, score, _, _) = cv2.minMaxLoc(result) scores.append(score) # 得到最合适的数字 groupOutput.append(str(np.argmax(scores))) cv2.rectangle(image_input, (gX - 5, gY - 5), (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1) cv2.putText(image_input, "".join(groupOutput), (gX, gY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2) # 得到结果 output.extend(groupOutput)# 打印结果print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))print("Credit Card #: {}".format("".join(output)))cv2.imshow("Image", image_input)cv2.waitKey(0)cv2.destroyAllWindows()结果展示
Credit Card Type: VisaCredit Card #: 4020340002345678总结
以上所述是小编给大家介绍的Python开发之基于模板匹配的信用卡数字识别功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本项目利用python以及opencv实现信用卡的数字识别前期准备导入工具包定义功能函数模板图像处理读取模板图像cv2.imread(img)灰度化处理cv2.
任务要求:基于模板匹配算法识别PCB板型号使用工具:Python3、OpenCV使用模板匹配算法,模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物
本文实例讲述了Python随机生成信用卡卡号的实现方法。分享给大家供大家参考。具体分析如下:这段Python代码根据信用卡卡号产生规则随机生成信用卡卡号,是可以
为什么微信信用卡不能用?微信怎么绑定信用卡?微信现在的功能都比较的完善了哦,我们可以通过微信去使用信用卡哦,有微信用户表示微信信用卡不能用,微信信用卡不能用
微信不仅成为了很多人的社交软件,更是开发了很多功能。比如说在微信漂流瓶、微信红包、微信申请信用卡等等,说起信用卡,很多还不知道微信上可不可以绑定信用卡,下面