时间:2021-05-23
我们知道当在a,b处的偏导为0时,代价函数e达到最小值,所以得到二元一次方程组
Σ(axi+b-yi)*xi=0
Σ(axi+b-yi)=0
该方程组是关于未知数为a,b的二元一次方程组,通过求解该方程,得到a,b
通过sympy库解方程组,得出了a= 3.01182977621975,b= -1.00272253325765,已经与我们真实的a,b很接近了,下面进行作图
plt.figure(figsize=(10,10))plt.scatter(x,y,s=1)plt.plot(x,result[a]*x+result[b],c='red')print(type(a),type(b)) #<class 'sympy.core.symbol.Symbol'> <class 'sympy.core.symbol.Symbol'>我们注意到最小二乘法最后一步要求p个方程组,是非常大的计算量,其实计算起来很难,因此我们就有了一种新的计算方法,就是梯度下降法,梯度下降法可以看作是 更简单的一种 求最小二乘法最后一步解方程 的方法
# 注意这里覆盖了sympy.abc的a和b# 设定a和b的起始点a,b=0.1,0.1#步长,也称作学习率alpha=0.00001#循环一千次结束for i in range(1000): a-=alpha*np.sum((a*x+b-y)*x) b-=alpha*np.sum(a*x+b-y)print(a,b) #3.0118297762197526 -1.002674927350334通过梯度下降法,得出了a= 3.0118297762197526,b= -1.002674927350334,也是很接近真实的a,b值了,作图看看
plt.figure(figsize=(10,10))plt.scatter(x,y,s=1)plt.plot(x,a*x+b,c='black')print(type(a),type(b)) #<class 'numpy.float64'> <class 'numpy.float64'>到此这篇关于利用Python实现最小二乘法与梯度下降算法的文章就介绍到这了,更多相关Python最小二乘法与梯度下降内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
线性回归是机器学习中的基础算法之一,属于监督学习中的回归问题,算法的关键在于如何最小化代价函数,通常使用梯度下降或者正规方程(最小二乘法),在这里对算法原理不过
本文实例讲述了Python基于最小二乘法实现曲线拟合。分享给大家供大家参考,具体如下:这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数。考虑如下的
最小二乘法矩阵#!/usr/bin/envpython#-*-coding:utf-8-*-importnumpyasnpdefcalc_left_k_mat(
用JFreeChart绘制光滑曲线,利用最小二乘法数学原理计算,供大家参考,具体内容如下绘制图形:代码:FittingCurve.javapackageorg.
本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下模块导入importnumpyasnpimportgaosiasgs代码"""本函