时间:2021-05-23
#!/usr/bin/env python# -*- coding:utf-8-*-# file: {NAME}.py# @author: jory.d# @contact: dangxusheng163@163.com# @time: 2020/04/10 19:42# @desc: 使用dlib进行人脸检测和人脸关键点import cv2import numpy as npimport globimport dlibFACE_DETECT_PATH = '/home/build/dlib-v19.18/data/mmod_human_face_detector.dat'FACE_LANDMAKR_5_PATH = '/home/build/dlib-v19.18/data/shape_predictor_5_face_landmarks.dat'FACE_LANDMAKR_68_PATH = '/home/build/dlib-v19.18/data/shape_predictor_68_face_landmarks.dat'def face_detect(): root = '/media/dangxs/E/Project/DataSet/VGG Face Dataset/vgg_face_dataset/vgg_face_dataset/vgg_face_dataset' imgs = glob.glob(root + '*.jpg', recursive=True) assert len(imgs) > 0 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(FACE_LANDMAKR_68_PATH) for f in imgs: img = cv2.imread(f) # The 1 in the second argument indicates that we should upsample the image # 1 time. This will make everything bigger and allow us to detect more # faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets): x1, y1, x2, y2 = d.left(), d.top(), d.right(), d.bottom() print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( i, x1, y1, x2, y2)) cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 1) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) # # Draw the face landmarks on the screen. ''' # landmark 顺序: 外轮廓 - 左眉毛 - 右眉毛 - 鼻子 - 左眼 - 右眼 - 嘴巴 ''' for i in range(shape.num_parts): x, y = shape.part(i).x, shape.part(i).y cv2.circle(img, (x, y), 2, (0, 0, 255), 1) cv2.putText(img, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.3, (0, 0, 255), 1) cv2.resize(img, dsize=None, dst=img, fx=2, fy=2) cv2.imshow('w', img) cv2.waitKey(0)def face_detect_mask(): root = '/media/dangxs/E/Project/DataSet/VGG Face Dataset/vgg_face_dataset/vgg_face_dataset/vgg_face_dataset' imgs = glob.glob(root + '*.jpg', recursive=True) assert len(imgs) > 0 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(FACE_LANDMAKR_68_PATH) for f in imgs: img = cv2.imread(f) # The 1 in the second argument indicates that we should upsample the image # 1 time. This will make everything bigger and allow us to detect more # faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets): x1, y1, x2, y2 = d.left(), d.top(), d.right(), d.bottom() print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( i, x1, y1, x2, y2)) cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 1) # Get the landmarks/parts for the face in box d. shape = predictor(img, d) print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) # # Draw the face landmarks on the screen. ''' # landmark 顺序: 外轮廓 - 左眉毛 - 右眉毛 - 鼻子 - 左眼 - 右眼 - 嘴巴 ''' points = [] for i in range(shape.num_parts): x, y = shape.part(i).x, shape.part(i).y if i < 26: points.append([x, y]) # cv2.circle(img, (x, y), 2, (0, 0, 255), 1) # cv2.putText(img, str(i), (x,y),cv2.FONT_HERSHEY_COMPLEX, 0.3 ,(0,0,255),1) # 只把脸切出来 points[17:] = points[17:][::-1] points = np.asarray(points, np.int32).reshape(-1, 1, 2) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) black_img = np.zeros_like(img) cv2.polylines(black_img, [points], 1, 255) cv2.fillPoly(black_img, [points], (1, 1, 1)) mask = black_img masked_bgr = img * mask # 位运算时需要转化成灰度图像 mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) masked_gray = cv2.bitwise_and(img_gray, img_gray, mask=mask_gray) cv2.resize(img, dsize=None, dst=img, fx=2, fy=2) cv2.imshow('w', img) cv2.imshow('mask', mask) cv2.imshow('mask2', masked_gray) cv2.imshow('mask3', masked_bgr) cv2.waitKey(0)if __name__ == '__main__': face_detect()
以上就是python使用dlib进行人脸检测和关键点的示例的详细内容,更多关于python 人脸检测的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python与C++dlib人脸检测结果对比,供大家参考,具体内容如下说明:由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib
Python3利用Dlib19.7实现摄像头人脸检测特征点标定0.引言利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定;图1工程效果示
0.引言利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的;可以自动从摄像头中
人脸检测这里的人脸检测并非人脸识别,但是却可以识别出是否有人,当有人时候,你可以将帧图进行人脸识别(这里推荐Face++的sdk),当然我写的demo中没有加入
1.引言在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工;这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取;单个/多个人脸检测,并依次